AVERAGE POWER SCALING OF ULTRAFAST LASERS

1. JuSPARC Workshop

Vaals, 28.3.2019

Dieter Hoffmann

Innoslab Power Amplifiers

ThinDisc Booster

Spectral Broadening

OUTLINE

- Introduction ILT Lasers and Laser Optics
- INNOSLAB the Concept for Power Scaling
 - Power Scaling at 1 μm
 - Energy Scaling at 1µm
 - Operation at longer Wavelengths
- Parameter Scaling of Ultrashort Pulse Lasers
 - Power Scaling beyond 1 kW
 - Energy Scaling to mJ Range
 - Pulse Shortening below 500 fs
- Summary
- Outlook

OUTLINE

- Introduction ILT Lasers and Laser Optics
- INNOSLAB the Concept for Power Scaling
 - Power Scaling at 1 μm
 - Energy Scaling at 1µm
 - Operation at longer Wavelengths
- Parameter Scaling of Ultrashort Pulse Lasers
 - Power Scaling beyond 1 kW
 - Energy Scaling to mJ Range
 - Pulse Shortening below 500 fs
- Summary
- Outlook

The Fraunhofer Institute for Laser Technology ILT

Facts and Figures

- € 34.4 M operating budget (without investments) in 2017
- 86% contract research revenue and 14% base funding
- € 5.5 M in investments in 2017
- 502 employees in 2017, of this 181 scientists and engineers, and 241 student assistants
- DQS certified according to DIN EN ISO 9001
- One patent per month on average
- One to two spin-offs per year on average (More than 30 ILT spin-offs in the last 25 years)
- Approx. 10-15 participations in trade fairs and more than 20 organized events (conferences, seminars) per year
- Approx. 15 Ph.D. graduates at RWTH Aachen University faculties per year
- Over 70 master, bachelor degrees per year

Tailored Lasers for Industrial Use

Laser Beam Sources

- Power / Energy
- Spatial Quality
- Temporal Quality
- Spectral Quality

Applications

- Manufacturing Technology
- Measurement Technology
- Microelectronics (EUV)
- Life Sciences

Laserentwicklung am Fraunhofer-Institut für Lasertechnik

1990 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

© Fraunhofer ILT

Lasers and Laser Optics – ILT Working Groups

© Fraunhofer ILT

Semiconductor Laser Simulation Software (SEMSIS)

Seite 8 © Fraunhofer ILT

Q-switched high-power fiber laser

- High-power fiber resonator with external q-switches
 - Pulse duration of 8 ns (FWHM)
 - Peak power ~ 250 kW
 - Average power > 400 W
 - Pulse energy > 8 mJ
- Scaled to > 1 kW avg. power at Laserline

page 9 © Fraunhofer ILT

High-stability single-frequency fiber amplifier

- Pre-studies of an ESA-mission to measure the gravitational field of the earth
- Interferometric setup with 2 satellites in tandem (distance ~ 200 km)
- Driving requirements:
 - Power stability
 - Bandwidth (< 10 kHz)</p>
 - Frequency stability
 - Output power > 500 mW
 - PER > 20 dB
- Space compatibility of components (thermal, vacuum, shock, vibration)
- Successful environmental test campaign towards TRL 5

MERLIN – LIDAR Beam Source for Satellite based Methane Detection

Page 11 © Fraunhofer ILT

Packaging of Crystals and Optics

- Mounting technology for Space-Lasers
 - Highly stable optomechanical mounts: Tilt < 5..10 µrad (reliable), tested in harsh environment (25 grms, -40°... +60°C)</p>
- Packaging of active optical components
 - KTP, BBO, LBO , TGG, Nd:YAG, Yb:YAG, Nd:YVO₄
- Complex optical setups with active alignment (Pick&Align) & passive reflow soldering
 - MERLIN-OPO-BB, FULAS-Demonstrator (tested: -30°C..+50°C)
- Quality assurance
 - Temperature & vibration testing
 - Database for full traceability of materials and processes

© Fraunhofer ILT

OUTLINE

- Introduction ILT Lasers and Laser Optics
- INNOSLAB the Concept for Power Scaling
 - Power Scaling at 1 μm
 - Energy Scaling at 1µm
 - Operation at longer Wavelengths
- Parameter Scaling of Ultrashort Pulse Lasers
 - Power Scaling beyond 1 kW
 - Energy Scaling to mJ Range
 - Pulse Shortening below 500 fs
- Summary
- Outlook

Innoslab Platform – History

OUTLINE

- Introduction ILT Lasers and Laser Optics
- INNOSLAB the Concept for Power Scaling
 - Power Scaling at 1 μm
 - Energy Scaling at 1µm
 - Operation at longer Wavelengths
- Parameter Scaling of Ultrashort Pulse Lasers
 - Power Scaling beyond 1 kW
 - Energy Scaling to mJ Range
 - Pulse Shortening below 500 fs
- Summary
- Outlook

The INNOSLAB Laser Amplifier

Low Cost High Gain Nd:Innoslab Amplifier

- Compact, energy- and cost efficient modular ps-Laser platform
 - Highly integrated, cost efficient
 Microchip-Laser, pulse length: 25 50 ps
 - compact, cost efficient
 Nd:YVO₄-INNOSLAB-amplifier
 - Single stage design
 - Power > 250 W
 - Amplification > 250
 - Efficient frequency converter to UV and MIR

Clearly cost reduced provision of application relevant new laser source parameters

Seite 17 © Fraunhofer ILT

400 W Single Stage Nd:YVO₄ INNOSLAB Amplifier

- Compact Low Cost System
- Results:
 - 411 W@800 kHz
 - 390 W@400 kHz (10 ps)
 - 220 W@200 kHz
 - > 40% o.-o. efficiency
 - M² _{90/10} < 1,5

Nd:Innoslab - Power Stability: 1MHz, 6.7W Seed

- seeder + amplifier from cold start
- data: cold start + 2 min
- mean = 404.69W stdv = 1.04 (0.26%) delta = 13.00 (3.21%)
- Lab setup without any housing
- Measured with Coherent LM1000

OUTLINE

- Introduction ILT Lasers and Laser Optics
- INNOSLAB the Concept for Power Scaling
 - Power Scaling at 1 μm
 - Energy Scaling at 1µm
 - Operation at longer Wavelengths
- Parameter Scaling of Ultrashort Pulse Lasers
 - Power Scaling beyond 1 kW
 - Energy Scaling to mJ Range
 - Pulse Shortening below 500 fs
- Summary
- Outlook

Solid State Lasers: Beam Sources for Aerospace

Setup – 500 mJ InnoSlab Amplifier

Parameter	Value		
Folds	5		
Resonator length	196 mm		
Crystal size (WxHxL)	40 x 9 x 45 mm³		
Nd doping level	0.3 %		
Pump energy	1950 mJ		
Pump spot size	4 x 40.2 mm²		

Energy scaling of a 100 Hz Nd:YAG Innoslab

© Fraunhofer ILT

OUTLINE

- Introduction ILT Lasers and Laser Optics
- INNOSLAB the Concept for Power Scaling
 - Power Scaling at 1 μm
 - Energy Scaling at 1µm
 - Operation at longer Wavelengths
- Parameter Scaling of Ultrashort Pulse Lasers
 - Power Scaling beyond 1 kW
 - Energy Scaling to mJ Range
 - Pulse Shortening below 500 fs
- Summary
- Outlook

Thulium:YLF for 2 µm generation

- Tm:YLF rod laser at 1.9 µm
 - 25 W, 40 % o-o eff.
 - M² ~ 1.5
- Tm:YLF INNOSLAB Laser at 1.9 µm
 - My² < 3, Mx² < 360
 - 200 W cw, 270 W in 1.2 ms qcw
 - Pumping of Ho:YLF
- Cr:ZnSe for 3 µm ps pulses

OUTLINE

- Introduction ILT Lasers and Laser Optics
- INNOSLAB the Concept for Power Scaling
 - Power Scaling at 1 μm
 - Energy Scaling at 1µm
 - Operation at longer Wavelengths
- Parameter Scaling of Ultrashort Pulse Lasers
 - Power Scaling beyond 1 kW
 - Energy Scaling to mJ Range
 - Pulse Shortening below 500 fs
- Summary
- Outlook

Challenge pump-intensity (ZEMAX)

Challenge damage-threshold

© Fraunhofer ILT

Numerical Simulation of the beam propagation (OPT)

- 3D Spatial Resolution of Intensity in the crystal
- Laser intensity by Propagation of the Complex electrical Field

Experimental - Setup

High Power Amplifier – combination of all designs!

	Fiber	Innoslab	Thin-disk
			multi-pass
Average power (fundamental mode)	< 100 W	100-5000 W	>1 kW
Mode area	$< 0.004 \text{mm}^2$	$0.1 \text{mm}^2 \Rightarrow 2 \text{mm}^2$	>10 mm ²
Amplification factor	> 60 dB	30 dB	<10 dB
Nonlinearity @100W $B/(P_{peak}/P)$	1.10 ⁻³	2·10 ⁻⁵	10 ⁻¹⁰
Pulse energy (CPA)	1 mJ	100 mJ	1 J
Repetition rate	>10 kHz	>10 kHz	>10 kHz

Setup - seeder

- Amplitude Satsuma HP
- Industrial fiber MOPA system
- Average power 7 W (up to 10 W)
- Pulse repetition rate 40 MHz

Setup - Innoslab

Setup - Innoslab

Setup – Thin-Disk

- Yb:YAG disk
- Up to 9 kW pump power at 940 nm
- Pump spot diameter
 10 mm
- 12 pump passes

Experimental results

Page 36 © Fraunhofer ILT

OUTLINE

- Introduction ILT Lasers and Laser Optics
- INNOSLAB the Concept for Power Scaling
 - Power Scaling at 1 μm
 - Energy Scaling at 1µm
 - Operation at longer Wavelengths
- Parameter Scaling of Ultrashort Pulse Lasers
 - Power Scaling beyond 1 kW
 - Energy Scaling to mJ Range
 - Pulse Shortening below 500 fs
- Summary
- Outlook

Yb:Innoslab – Energy scaling by CPA

- No CPA: Limitation to < 100 μJ by nonlinear effects or damage of the slab crystal
- CPA enables multi-mJ pulse energy

CPA Results

CPA Results

No relevant temperature increase of gratings

Seite 40 © Fraunhofer ILT

OUTLINE

- Introduction ILT Lasers and Laser Optics
- INNOSLAB the Concept for Power Scaling
 - Power Scaling at 1 μm
 - Energy Scaling at 1µm
 - Operation at longer Wavelengths
- Parameter Scaling of Ultrashort Pulse Lasers
 - Power Scaling beyond 1 kW
 - Energy Scaling to mJ Range
 - Pulse Shortening below 500 fs
- Summary
- Outlook

Nonlinear Pulse Compression

Spectral Broadening:

Seite 42 © Fraunhofer ILT

Nonlinear Pulse Compression

- Transition from a waveguide to a suitably designed lens duct overcomes self-focusing limit.
- Pulse compression at 1-100 μJ energy desirable (e.g. HHG at MHz repetition rate).
- Insensitive to variations of power, beam position and profile, and highly efficient (>90%)
 → suitable for high average power.
- Compact implementation with multi-pass cell (MPC).

MPCSB Nonlinear Pulse Compression

- First demonstration of MPCSB scheme (2016)^[1]: Compression from τ = 880 fs to 170 fs at 10 MHz, 37.5 μ J
- Setup for EUV frequency comb spectroscopy^[2]: Compression from τ = 860 fs to 115 fs at 40 MHz, 7.5 μ J
- Setup for photoelectron spectroscopy ^[3]: Compression from τ = 230 fs to 35 fs at 18.5 MHz, 4.5 μ J
- High transmission for all setups (T = 91%, 91%, 88%). Beam quality preserved ($M^2 < 1.2$).

QUANTUM OFTIC

AX PLANCK INSTITUTE [2] J. Weitenberg et al., Opt. Express 25, 20502-20510 (2017).

[3] J. Weitenberg et al., JQE 53, 8600204 (2017).

© Fraunhofer ILT

Geometrical Output Coupling with Hole Mirror

Circulating fundamental mode and small hole (~100 μm) in mirror behind focus.

Harmonics have smaller divergence angle than fundamental radiation.

Output coupling is more efficient for higher order harmonics.

Harmonics with photon energy >100 eV at 78 MHz generated and coupled out ^[1].

[1] I. Pupeza et al., Nat. Photon. 7, 608 (2013).

[2] T. Saule, et al., Nat. Comm. 10, 485 (2019).

Pulse Compression Setup at JuSPARC, Jülich

Seite 46 © Fraunhofer ILT

Fraunhofer

ILT Multipass Cell for JuSPARC

- Shipped in December 2018
- Parameters
 - 400 W
 - 100 fs
 - 10 MHz

Spectral Broadening in Gas-Filled MPC

Seite 48 © Fraunhofer ILT

Spectral Broadening in Gas-Filled MPC

Seite 49 © Fraunhofer ILT Fraunhofer

Pulse Compression after Nonlinear Spectral Broadening

SUMMARY

► > 500 mJ @ ns with 2 stage amplifier demonstrated → further energy scalability and / or pulse shortening possible

■ 1.5 kW @ 600 fs power scaling by INNOSLAB and ThinDisk → scalable

- **mJ** pulse energy @ 630 fs and 500 W by efficient CPA \rightarrow scalable
- Efficient pulse shortening demonstrated 260 W @ 28 fs → scalable

Seite 51 © Fraunhofer ILT

OUTLINE

- Introduction ILT Lasers and Laser Optics
- INNOSLAB the Concept for Power Scaling
 - Power Scaling at 1 μm
 - Energy Scaling at 1µm
 - Operation at longer Wavelengths
- Parameter Scaling of Ultrashort Pulse Lasers
 - Power Scaling beyond 1 kW
 - Energy Scaling to mJ Range
 - Pulse Shortening below 500 fs
- Summary
- Outlook

ADVANCED PHOTON SOURCES – Fraunhofer Cluster of Excellence

Vision - Scaling of Ultrafast Lasers to the Average Power Range of Industrial CW Sources

Seite 53 © Fraunhofer ILT

ADVANCED PHOTON SOURCES

Seite 54 © Fraunhofer ILT

Advanced Photon Sources User Facility – Application Lab ILT

- Lab will be available in September 2019
 - 1 kW 600 fs in 2019
 - 500 W < 100 fs in 2019
 - 2.5 kW < 100 fs in 2020
 - 5 kW end of 2020

Acknowledgements

- Peter Rußbüldt, Jan Schulte, Thomas Sartorius, Johannes Weitenberg, Marco Hoefer, Philip Kucirek, Benjamin Erben, et. al.
- Part of this work was funded by the German Federal Ministry BMBF, BMWi and ESA

We thank our project partners for cooperation and support

Thank You for listening

© Fraunhofer ILT